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Background

 NASA undertakes multi-decadal programs in 
science and engineering

 The Agency is involved in all aspects of a program, 
from conceptualization, design, manufacture, test, 
operations, through retirement

 IT systems and data need to support a large, 
distributed, and evolving stakeholder community 
and technology base
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Challenge for Constellation Program

 NASA’s Constellation Program is implementing the 
Vision for Space Exploration (VSE), operating a series 
of coordinated human and robotic missions, 
including surface systems, over a period of 30+ years

 How to effectively support this long-term effort 
given the expected technology advances, varying 
stakeholder needs, and allow for planned and 
unplanned evolution/changes?
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Supporting the Lifecycles

System 
Lifecycle

Operate
Maintain

Upgrade

Design

Manufacture

Test & 
Eval

Learn

Simulation
Cost RiskPerf

Lessons 

Learned

Each domain of practice may use different conventions 

and representations making Interoperability challenging

Data evolves as it is 

used by each domain 
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Selecting an Enterprise Architecture
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 Examined many of the current EA’s and found 

that a nominal TOGAF architecture aligned with 
the organization, missions, systems

The challenge for most 

organizations is to truly 

adhere to an EA

For example, is there is 

a clear separation 

between your data and 

software?



General Needs

 Ability to use distributed systems – many 
partners, vendors, contractors, etc. (producers 
and consumers)

 Need evolvable, flexible data representation

 Need evolvable, flexible IT systems

 But…

 It is not reasonable to rewrite or replace or even 
abstract every system

 Solution needs to have adoption scaling (“buy by the 
yard”)
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An Information Model Continuum
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Shared human 

consensus

Text 

descriptions

Information 

hardwired; 

used at runtime

Information 

processed and 

used at runtime

Pump: “a device for 

moving a gas or liquid 

from one place or 

container to another”

Formal 
(for humans)

Informal
(explicit)

Implicit Formal 
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Further to the right means:

Less ambiguity

More likely to have correct 

functionality

Better interoperation

Less hardwiring

More robust to change

More effort – needs up front 

investment in understanding the 

information

Source: “Where are the Semantics in the Semantic Web”, Michael Uschold, The Boeing Company

Information models are pervasive, but there is a wide range of representations
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Cx Data Architecture Objectives

1. Semantic Interoperability - support interoperability between Constellation 
Elements through controlled information types, structures, and knowledge of their 
meanings, and specified abstraction and composition rules

2. Semantic Mediation - specify structures for, and mediate exchange and aggregation 
of, information between and among  tools, systems and users

3. Knowledge Capture - capture knowledge across mission and system lifecycles, 
including long-term maintenance and evolution

4. Knowledge Flow - define and deploy models of mission and system lifecycles for 
unifying knowledge capture and flow across NASA disciplines and teams

5. Information Exchange - provision operational information exchange schemas for 
specific needs with guarantees of consistency and completeness of representation

6. Information Specification - define information structures and naming within ESMD 
programs with precision, traceable provenance, and governance

7. Information Independence - represent information in a tool-neutral and project 
independent manner

8. Operational Effectiveness - improve decision support, throughout the lifecycle, for 
risk, performance, and costs starting with trade studies and through complete 
mission and system lifecycles, including long-term maintenance and evolution

These objectives drove our decision to use Semantic 

Technologies as the basis for the CxDA Data Architecture



Approach for Data and IT Architecture

 Semantic Technology –based approach for Data 
Architecture

 Basis for application-independent neutral model for 
interoperability

 Machine-intelligable representations

 Provides a model-based data specification

 SOA approach for IT Architecture

 Distributed Systems, Loose coupling, Flexible Service 
Composition, Composable Data Flows, Abstraction

 Semantic technology –enabled Registries
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Constellation Data Architecture (CxDA)
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Constellation Data Architecture
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Using the CxDA

Need Element Description

What to call it? Identification Nomenclature, Identifiers, & Terminology

How to represent it? Data Exchange Common Formats & Protocols

How to describe it? Models Formal Descriptions of Information

How to implement it? Infrastructure Services & Registries

How to use it? Process Data Flows & Management

Where to get it? Data Assets Original Sources & Data Repositories

 Information Architecture is the practice of structuring information for a purpose

 Establish authoritative source of information interoperability and data architecture 
standards

 Use tool-independent representations for interoperability

 Capture relationships between information

 High Level Elements
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CxDA/NExIOM Standard Vocabulary (NSV)

Slide 12

 Basic physical quantities, forces & moments examples

Data-Name Identifier Description Definition Symbol (Units) Units  

Potential Potential ∇φ = q L2/T  SI

StreamFunction Stream function (2-D) ∇ × ψ= q L2/T  SI

Density Static density (ρ) M/L3 SI

Pressure Static pressure (p) M/(LT2)  SI

Temperature  Static temperature (T) Θ SI

EnergyInternal
Static internal energy per unit 

mass (e) L2/T2 SI

Enthalpy Static enthalpy per unit mass (h) L2/T2 SI

Entropy Entropy (s) ML2/(T2Θ)  SI

EntropyApprox Approximate entropy (sapp = p / ργ) (L(3γ-1))/((M(γ-1)).T2)  SI

DensityStagnation Stagnation density (ρ0) M/L3 SI

PressureStagnation Stagnation pressure (p0) M/(LT2)  SI

TemperatureStagnation Stagnation temperature (T0) Θ SI

EnergyStagnation Stagnation energy per unit mass (e0) L2/T2 SI

EnthalpyStagnation Stagnation enthalpy per unit mass (h0) L2/T2 SI

EnergyStagnationDensity Stagnation energy per unit volume (ρe0) M/(LT2)  SI

VelocityX x-component of velocity (u = q · ex) L/T  SI

VelocityY y-component of velocity (v = q . ey) L/T  SI

VelocityZ z-component of velocity (w = q . ez) L/T  SI

VelocityR Radial velocity component (q . er) L/T  SI

Data-Name Identifier Description Units

ForceX Fx
= F ⋅ ex ML/T2

ForceY Fy
= F ⋅ ey ML/T2

ForceZ Fz
= F ⋅ ez ML/T2

ForceR Fr
= F ⋅ er ML/T2

ForceTheta Fθ
= F ⋅ eθ ML/T2

ForcePhi Fφ
= F ⋅ eφ ML/T2

Lift L or L' ML/T2

Drag D or D' ML/T2

MomentX Mx
= M ⋅ ex ML2/T

MomentY My
= M ⋅ ey ML2/T

MomentZ Mz
= M ⋅ ez ML2/T

MomentR Mr
= M ⋅ er ML2/T

MomentTheta Mθ
= M ⋅ eθ ML2/T

MomentPhi Mφ
= M ⋅ eφ ML2/T

MomentXi Mξ
= M ⋅ eξ ML2/T

MomentEta Mη
= M ⋅ eη ML2/T

MomentZeta Mζ
= r ⋅ eζ ML2/T

Moment_CenterX x0
= r0 ⋅ ex L

Moment_CenterY y0
= r0 ⋅ ey L

Moment_CenterZ z0
= r0 ⋅ ez LMore at http://www.qudt.org/



CxDA Ontology Modeling

 Concepts and relationships used to describe and represent an area of knowledge (subject 
matter) are defined

 A vocabulary

 A shared language

 An explicit representation of relationships

 Used by people, databases, and applications that need to share information in a subject area

 A variety of representations are available, both human and machine readable
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Ontology Architecture

 Ontology Architecture 
developed to support 
componentization, 
reuse, composition, 
and co-development

 Integrates domains 
and disciplines 

 Over 200 ontologies
(and growing)

 Substantial work on 
fundamental models 
for engr/physics/ops
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Constellation Lifecycle Model



Units Ontology

 The Units Ontology is composed of several 
individual ontologies
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Connecting your Information
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CxDA Models Allow 
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Constellation Element to 
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Putting the Models to Work

Understand Pedigree of Data

Understand Authority of Data

Specify Data and 

Data Structures

Processing Data
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Analyst
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Modeling and Simulation Teams for different Constellation 
Elements use tools that need to interoperate

SOA in Design and Analysis Tool Chains



Is XML enough?

 XML was originally defined to describe documents

 Effectively only one structuring tool

 Tree/Hierarchy/Container

 Weak support for relationships

 Weak support for merging/combining data (aggregation)

 No consistent method of defining semantics

 Schema limitations

 XML provides standardization of data format and 
processing tooling, but not data modeling

 XML does equal Interoperability
19



Looking at OWL to help

 OWL is based on set theory = Graphs not Trees

 Far more expressivity as a data modeling language 
than XML

 Strong type system

 Strong support for relationships (first class objects)

 Foundational specification of identity/addressability

 Schema uses the same language as Data spec

 “levels the playing field” between Schema and Data

 Other work provides Rules (SPIN) using the same 
representation as Schema and Data
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Considerations for Data Exchange

 Ideally would exchange data using (ontology) 
models (RDF/OWL)

 But semantic technology is a relatively new practice

 So how to accommodate reality of the existing 
and growing XML ecology?

 XML SchemaPlus

 Fully XML compliant, but retains ontology basis

 Fundamental coexistence strategy
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XML SchemaPlus

 XML SchemaPlus (XSP) was developed to integrate 
Semantic Models (RDF/OWL) with XML

 XML has numerous challenges as a data modeling 
language

 XML SchemaPlus introduces specification and 
methods of specifying XML that resolves model issues

 Result is XML Schema and Data files that are fully compliant 
with XML standard, but align with models in Ontologies

 XSP XML is much cleaner, simpler, powerful, and precise 

 Using controlled vocabularies and available structuring 
mechanisms XML can be authored and consumed without 
direct use of ontologies

 More at http://www.xspl.us/ 22



Application XML Schemas and NASA Controlled 
Vocabularies are generated from OWL Models
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Generating XML Schemas from SchemaPlus

 A SchemaPlus can be converted to an XML Schema document 
(XSD) automatically
 The transform SchemaPlusToSchema.xslt is used to generate the schema 

from the SchemaPlus

 SchemaPlusToSchema.xslt is part of the NExIOM XML 
SchemaPlus suite
 If you develop your own SchemaPlus, you can run this transform to 

generate an XSD from it
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Service Implementation

 Wanted to have an architecture which strongly 
supported ability to easily “stand up systems”

 In the Constellation Program not all applications 
lend themselves to providing a service interface 
and participation in a SOA

 Legacy applications, insufficient APIs, insufficient 
performance, access control restrictions

 The use of Registries was introduced 

 Takes on a variety of participation roles including 
assist, augment, replace, new capability
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Using Semantics with Registries

 Using ontologies allow a data model to be 
componentized, with clear distinctions, 
constraints, and relationships established

 An ontology architecture defines how the 
componentized models are used in concert

 Using semantic technology –enabled Registries 
can be thought of as an implementation of the 
CxDA ontologies

 can use multiple registries to split up data in 
meaningful ways

 A SOA architecture allows registries to be used in 
concert 26



System of Registries

 Provide consistent specifications of data
 Across time, between organizations, between 

processes

 With explicit specification of machine intelligable
semantics

 Connect "silos" of information
 Captured within applications or proprietary file 

formats, through the use of standardized data 
definitions

 Support the exchange of information
 Using consistent formats and protocols; ontology-

compliant XML and Web Services 
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CxDA Registries in SOA

 Use registries with native capabilities of semantic 
web triplestores

 URI’s, distributed deployment, query, aggregation

 Registries serve many functions in the architecture

 Definitions

 Check/Audit (Syntax, Structural, Semantic)

 Locating information – incl. search & query

 Connecting information

 Mediation, incl. Transformation

 Application abstraction

 Data (!)

 … 28



Example use of Registries and Applications

29

This diagram is a high-

level depiction of a 

registry-enabled SOA 

supporting missions 

operations

The applications 

(IBMS, CCTR, DAggr) 

can interact with and 

can be based on a 

variety of registries to 

support functions in the 

various domains.

ASA = Authoritative 

Source Application



Conclusion

 Semantic Technology approach provides key 
capability for a flexible SOA

 Model-based data definitions (Data Architecture) 
are essential for interoperability and data longevity

 Commit more to models, less to code

 An ontology-compatible approach to representing 
information in XML format has been developed to 
enable usage in existing applications

 Use of registries can provide implementation 
flexibility and functionality in SOA’s
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